The Mammalian Mismatch Repair Pathway Removes DNA 8-oxodGMP Incorporated from the Oxidized dNTP Pool
نویسندگان
چکیده
Mismatch repair (MMR) corrects replication errors. It requires the MSH2, MSH6, MLH1, and PMS2 proteins which comprise the MutSalpha and MutLalpha heterodimers. Inactivation of MSH2 or MLH1 in human tumors greatly increases spontaneous mutation rates. Oxidation produces many detrimental DNA alterations against which cells deploy multiple protective strategies. The Ogg-1 DNA glycosylase initiates base excision repair (BER) of 8-oxoguanine (8-oxoG) from 8-oxoG:C pairs. The Myh DNA glycosylase removes mismatched adenines incorporated opposite 8-oxoG during replication. Subsequent BER generates 8-oxoG:C pairs, a substrate for excision by Ogg-1. MTH1-an 8-oxodGTPase which eliminates 8-oxodGTP from the dNTP pool-affords additional protection by minimizing 8-oxodGMP incorporation during replication. Here we show that the dNTP pool is, nevertheless, an important source of DNA 8-oxoG and that MMR provides supplementary protection by excising incorporated 8-oxodGMP. Incorporated 8-oxodGMP contributes significantly to the mutator phenotype of MMR-deficient cells. Thus, although BER of 8-oxoG is independent of Msh2, both steady-state and H(2)O(2)-induced DNA 8-oxoG levels are higher in Msh2-defective cells than in their repair-proficient counterparts. Increased expression of MTH1 in MMR-defective cells significantly reduces steady-state and H(2)O(2)-induced DNA 8-oxoG levels. This reduction dramatically diminishes the spontaneous mutation rate of Msh2(-/-) MEFs.
منابع مشابه
The oxidized deoxynucleoside triphosphate pool is a significant contributor to genetic instability in mismatch repair-deficient cells.
Oxidation is a common form of DNA damage to which purines are particularly susceptible. We previously reported that oxidized dGTP is potentially an important source of DNA 8-oxodGMP in mammalian cells and that the incorporated lesions are removed by DNA mismatch repair (MMR). MMR deficiency is associated with a mutator phenotype and widespread microsatellite instability (MSI). Here, we identify...
متن کامل8-Oxoguanine incorporation into DNA repeats in vitro and mismatch recognition by MutSα
DNA 8-oxoguanine (8-oxoG) causes transversions and is also implicated in frameshifts. We previously identified the dNTP pool as a likely source of mutagenic DNA 8-oxoG and demonstrated that DNA mismatch repair prevented oxidation-related frameshifts in mononucleotide repeats. Here, we show that both Klenow fragment and DNA polymerase alpha can utilize 8-oxodGTP and incorporate the oxidized puri...
متن کاملOxidized dNTPs and the OGG1 and MUTYH DNA glycosylases combine to induce CAG/CTG repeat instability
DNA trinucleotide repeat (TNR) expansion underlies several neurodegenerative disorders including Huntington's disease (HD). Accumulation of oxidized DNA bases and their inefficient processing by base excision repair (BER) are among the factors suggested to contribute to TNR expansion. In this study, we have examined whether oxidation of the purine dNTPs in the dNTP pool provides a source of DNA...
متن کاملTrace amounts of 8-oxo-dGTP in mitochondrial dNTP pools reduce DNA polymerase γ replication fidelity
Replication of the mitochondrial genome by DNA polymerase gamma requires dNTP precursors that are subject to oxidation by reactive oxygen species generated by the mitochondrial respiratory chain. One such oxidation product is 8-oxo-dGTP, which can compete with dTTP for incorporation opposite template adenine to yield A-T to C-G transversions. Recent reports indicate that the ratio of undamaged ...
متن کاملCost of rNTP/dNTP pool imbalance at the replication fork.
The concentration of ribonucleoside triphosphates (rNTPs) in cells is far greater than the concentration of deoxyribonucleoside triphosphates (dNTPs), and this pool imbalance presents a challenge for DNA polymerases (Pols) to select their proper substrate. This report examines the effect of nucleotide pool imbalance on the rate and fidelity of the Escherichia coli replisome. We find that rNTPs ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Current Biology
دوره 12 شماره
صفحات -
تاریخ انتشار 2002